If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6u^2+2u-4=0
a = 6; b = 2; c = -4;
Δ = b2-4ac
Δ = 22-4·6·(-4)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10}{2*6}=\frac{-12}{12} =-1 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10}{2*6}=\frac{8}{12} =2/3 $
| 20-2x=56-5x | | 0=x^2-3.4x+1.2 | | 11x-6x+168=11x+114 | | -5b=10/3 | | 0=49k^2+7k+20 | | 9+2r=-2(1+r)-1 | | 4x=5/9=3 | | 11x-6x+168=11x+144 | | 5x+23x-3=7(4x+6) | | 9w+3=3(+) | | x+-13=-40 | | f•-9+4=2 | | 2+2h÷3=6 | | -2(x-1/2)=-2 | | ,12k-2=-38 | | 3x+29=11 | | 12x^2-60x+36=0 | | 2f-8=12+4f | | 9w+3=3(+,) | | -10w+-6w—20w+-7=13 | | n+21/24=8/24 | | 7(y-(9/7))=-3 | | (x^2)+20=9x | | (x^2)+20=-9x | | 4x+(x+3)=17 | | (4x-4)+(-3x+52)=180 | | (x+0.05*x+0.09975*x)*1.15+1766=6500 | | 77+-1=167+-10x | | 224-w=284 | | 3.7v=161 | | 3(2x+6)–4x=2(5x–2)+6 | | 9x-2(2-3x)=7(9x+2)+7 |